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1. Objectives of the proposal (1 page) 

The international effort to develop fusion energy is on the threshold of a new era. ITER (http://www.iter.org) 

aims to demonstrate the scientific and technological feasibility of magnetic fusion power. This is a dramatic 

step in establishing the potential of fusion energy. 

In this context, turbulence is one of the most fundamental questions in physics and fusion plasmas provide 

one of the most challenging environments for its study. 

This research project aims to study the turbulent transport phenomena in magnetically confined fusion 

plasmas and to develop analytical models and numerical tools in order to explain the experimental 

observations, improve predictive capabilities of the long-time behavior of fusion plasmas, and in particular, 

self-consistent co-evolution of turbulence and macroscopic profiles (i.e. radial profiles of temperature, 

density, rotation etc.). 

2. Methodology in a nutshell (1 page) 

In my work, I studied the turbulent driven transport in fluids and magnetized plasmas using various 

methodologies from simple Monte-Carlo particle simulations to high-power computing with Gyro-Kinetic 

code GYRO https://fusion.gat.com/theory/Gyrodoc.  

In the following I will present the results of the performed projects (prepared/published papers).   

3. Results (8-10 pages) 

a) Charge particle motion in the presence of non-Gaussian, Levy, electrostatic fluctuations: 

There is a considerable amount of experimental evidence [1-7]
 
and numerical gyrokinetic [8,9]

 
and fluid [10]

 

simulations that indicate that plasma turbulent transport in tokamaks is, under some conditions, non-

diffusive. There are several reasons for the possible breakdown of the standard diffusion paradigm which is 

based on restrictive assumptions including locality, Gaussianity, lack of long range correlations, and 

linearity. Different physical mechanisms can generate situations where e.g., locality and Gaussianity may be 

incorrect assumptions for understanding transport. For example, interactions with external fluctuations may 

introduce long-range correlations and/or anomalously large particle displacements. The source of the 

external fluctuations could be that not all relevant physics is taken into account such as coherent modes or 

other non-linear mechanisms. The emergence of such strange kinetics has been studied previously [11-18], 

e.g.,
 
using different modelling strategies where it may be generated by accelerated or sticky motions along 

https://fusion.gat.com/theory/Gyrodoc
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the trajectory of the random walk.  

In addition, turbulence intermittency is characterized by patchy spatial structures that are bursty in time and 

coupling to these modes introduces long range correlations and/or Lévy distributed noise characteristics. The 

probability density functions (PDF) of intermittent events often show unimodal structure with “elevated” 

tails that deviate from Gaussian predictions [19-21]. Experimental evidence of Lévy statistics in the 

electrostatic fluctuation at the plasma edge was presented in Ref. [21], with a Lévy index in the range α = 1.1 

− 1.3 at short times and in the range α = 1.8−2 at long times. Further- more, in Ref. [22] it was observed that 

moving from the inner to the outer region of edge plasma, the Lévy index decreases, suggesting that the 

PDFs of the turbulence near the boundary region of Heliotron J are nearly Gaussian, whereas at the outer 

regions of plasma they become strongly non-Gaussian. The statistics of the measured fluctuations at the edge 

of Stellarators such as Uragan 3M and HELIOTRON J have been observed to change from Lévy to Gaussian 

at the L to H-mode transition [23-25]. These types of observations are not limited to fusion plasmas, Lévy-

type turbulent random processes and related anomalous diffusion phenomena have been observed in a wide 

variety of complex systems such as semiconductors, glassy materials, nano-pores, biological cells, and 

epidemic spreading [26]
 
. The kinetic descriptions which arise as a consequence of averaging over the well-

known Gaussian statistics seem to fall short in describing the apparent randomness of these dynamical 

chaotic systems. Thus, the problem of finding a proper kinetic description for such complex systems is a 

challenge.  

Lévy statistics [27]
 
describing fractal processes (Lévy index α where 0 < α < 2) lie at the heart of complex 

processes such as anomalous diffusion. Lévy statistics can be generated by random processes that are scale- 

invariant with anomalous scaling exponents. This means that a trajectory lacks a unique characteristic scale 

that dominates the process. Geometrically this implies the fractal property that a trajectory, viewed at 

different resolutions, will exhibit self-similar properties. Indeed, self- similar analysis of fluctuation 

measurements by Langmuir probes in different fusion devices such as spherical tokamak, reversed field 

pinch, stellarator, and several tokamaks, have provided evidence to support the idea that density and 

potential fluctuations are distributed according to Lévy statistics. Furthermore, the experimental evidence of 

the wave-number spectrum characterised by power laws over a wide range of wave-numbers can be directly 

linked to the values of Lévy index α of the PDFs of the underlying turbulent processes.  

In a previous study [18]
 
the aim was to shed light on the non-extensive properties of the velocity space 

statistics and characterization of the fractal processes limited to the Fractional Fokker-Planck Equation in 

terms of Tsallis statistics. The goal of this paper is to study the statistics of charged particle motion in the 

presence of α- stable Lévy fluctuations in an external magnetic field and linear friction using Monte Carlo 

numerical simulations. The Lévy noise is introduced to model the effect of non- Gaussian, intermittent 

electrostatic fluctuations. The statistical properties of the velocity moments and energy for various values of 

the Lévy index α are investigated as well as the role of Lévy fluctuations on the statistics of the particles’ 

Larmor radii in order to examine potential limitations of gyro-averaging. Fractional kinetics of charged 

particle transport in a constant parallel magnetic field and a random electric field was studied in Ref. [15].
 

Going beyond this work, we perform 3-dimensional simulations in a helical magnetic field and study the 

statistics of the spatial displacements and Larmor radius which were not discussed in Ref. [15]
 
whose 

numerical results were limited to 2-dimensions using a different type of isotropic Lévy processes. However, 

memory effects are neglected since the Lévy noise is taken as white or delta correlated in time.  

We consider the motion of charged particles in a 3- dimensional magnetic field in a cylindrical domain in the 

presence of linear friction modelling collisional Coulomb drag and a stochastic electric field according to the 

Langevin equations  
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where qs and ms are the charge and mass of the particle species s, ν is the friction parameter and E is a 3-

dimensional, homogeneous, isotropic turbulent electric field modelled as an stationary, uncorrelated 

stochastic process without memory following an α –stable distribution, f(α,β,ζ,η), with characteristic expo- √ 

nent 0<α≤2, skewness β=0, variance ζ=1/ 2, and mean η = 0. Here, we use the definition of f(α,β,ζ,η) as 

described in Refs. [28-30].  

A periodic straight cylindrical domain with period L = 2πR0 is considered, with R0 being the major radius, 

and we use cylindrical coordinates (r, θ, z). magnetic field is a helical field of the form,  

 

A constant magnetic field in z-direction, Bz = B0, is assumed. The shear of the helical magnetic field, i.e. the 

dependence of the azimuthal rotation of the field as function of the radius, is determined by the q-profile, q(r) 

= rBz/(R0Bθ), where  

 

for which the q profile is  

 

In terms of the flux variable,  

 

q is a linear function of ψ. The numerical integration of Eqs. (1) and (2) is per-  

formed using a Runge-Kutta 4th order scheme (RK4) over the interval [0,T]. The time step for the RK4 

integration is defined by partitioning the interval [0,T] into N subintervals of width δ = T/N > 0,  

 

with the initial conditions r0, and v0. We compute ri and vi for the subintervals with the time step of dt = δ/n, 

and at every δ, we include the cumulative integral of the stochastic process using  

 

where  
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Here, using spherical coordinates, random samples in the Eρ radial direction are generated with the α-stable 

random generator developed in Ref. [28-30], and two uniformly distributed angles θ and θ between [0, 2π] 

are used. In Cartesian coordinates the components of the electric field are Ex = Eρ sinθcosθ, Ey = Eρ 

sinθsinθ, and Ez = Eρ cos θ. Np = 10
4 

particles are considered, and the simulation time is T = 500/ηc where 

ηc = 2π/Ωc and Ωc = |qs|B0/ms is the gyration frequency. We explore the dependence of the particle motion 

on the index α of the Lévy fluctuations and the parameter ε = χ/ν where χ is the amplitude of the fluctuations 

and ν is the damping coefficient. The convergence in probability of Lévy driven stochastic differential 

equations 1 and 2 have been discussed in Ref. [31]
 
where a criteria is established.  

Figure 1 shows samples of the particles’ energy as 

function of time for several values of α. It is observed 

that as α decreases, the random walk in energy is 

strongly influenced by outlier events which result in 

intermittent behaviour with appearance of Lévy 

flights between periods of small perturbations. The 

rate and the amplitude of the intermittent jumps in 

energy increase significantly as α is decreased. This 

behaviour is clearly observed in Figs. 2(a) and (b) 

where the PDF of Log10 of the particle energy, E, 

and the q = 1/2-moment
 
of the energy as functions of 

time are shown. As seen in Fig. 2(a) the decay of the PDFs changes from exponential in the case of a 

Gaussian process to power law in the case of a Lévy process. The power law exponent decreases as α is de- 

creased indicating the increase in the probability of the occurrence of Lévy flights. A breakup in the 

symmetry of the PDFs is also observed with a shift towards higher values of the energy, as the Lévy index α 

is reduced. Note that the numerical results indicate that the PDFs relax towards stationary states. The q = 1/2-

moments of the energy converge in the considered simulation time span, and there exist about two orders of 

magnitude increase in the converged values as α varies from a Gaussian pro- cess (α = 2) towards a strongly 

Lévy distributed process (α = 1.25), as can be seen in Fig. 2(b).  

We have performed Monte Carlo numerical simulations of charged particle motion in the presence of a 

fluctuating electric field obeying non-Gaussian Lévy statistics in a constant magnetic field and linear friction 

modelling the effect of collisional Coulomb drag. The Lévy noise was introduced in order to model the effect 

of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic 

turbulence. The statistical properties of the velocity moments and energy for various values of the Lévy 

index α were investigated, and the role of Lévy fluctuations on the particles Larmor radii, and the statistical 

moments of displacements were explored. We observed that as α is decreased, the random walk in energy is 

strongly influenced by outlier events which result in intermittent behaviour with appearance of Lévy flights 

in between periods of small perturbations. The rate and the amplitude of the intermittent jumps in energy 

increases significantly as α is decreased. The PDFs of the particles’ Larmor radii change from an exponential 

decay to a power law decay when the stochastic electrostatic process is changed from a Gaussian to a Lévy 

process. The power law decay de- creases with decreasing α. This corroborates the findings in Ref. 18 that 

the q-moment is an appropriate metric characterizing Lévy distributed processes. Our findings suggest that 

when turbulent electrostatic fluctuations exhibit non-Gaussian Lévy statistics, gyro-averaging and guiding 

centre approximations may not be fully justified and full particle orbit effects should be taken into ac- count. 

The results presented here point out potential limitations of gyro-averaging. Turbulent plasmas exhibit a very 
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large range of spatio-temporal scales. To over- come 

the computational challenge that this implies, it is  

FIG. 5. The linear fits of the power law decay (a) for 

energy, μE, and (b) for the Larmor radius, μρ, as 

functions of the Lévy index α, for different values of 

ε = 100 (black line with circle symbols), ε = 10 (red 

line with square symbols).  

customary to use reduced descriptions based on 

spatial and/or temporal averaging of degrees of 

freedom that evolve on small spatial scales and/or 

fast time scales compared to the macroscopic scales 

of interest. For ex-ample, the extensively used gyro-

kinetic models assume ρL/L ≪ 1 where ρL is the 

Larmor radius and L is the tokamak minor radius or 

a characteristic density gradient scale. However, it is 

important to keep in mind that in a turbulent plasma 

the Larmor radius is a statistical quantity, ⟨ρL⟩, 

(where ⟨·⟩ denotes ensemble average) and not an 

absolute number. For plasmas in Maxwellian equilibrium this issue might not be critical since the probability 

density function (PDF) of Larmor radii is sharply peaked around the thermal Larmor radius. However, when 

the PDF exhibits slowly decaying tails due to a significant number of outliers (i.e., particles with 

anomalously large Larmor radii) the situation is much less trivial. In particular, in the case of algebraic 

decaying PDFs, statistical moments might not exist and as a result in might not be possible to associate a 

characteristic scale to the process. The study of scale free stochastic processes has been a topic of significant 

interest in basic and applied sciences in general and in plasma physics in particular, see for example Refs. 

[23,33]
 
and references therein. Our numerical results indicate that when the electrostatic fluctuations follow 

Lévy statistics with index α, the PDFs of Larmor radii exhibit algebraic decay and this might compromise the 

meaning of ⟨ρL⟩. Formally, if the PDF of x ∈ (0,∞) decays as f ∼ x
−μ

, then the n-th moment, i.e. ⟨xn⟩ = ∫  
∞ 

x
n

f dx, will diverge, and thus will not be 0 well-defined, for μ < n + 1. Based on this, for α < 1.75, ⟨ρL⟩ is 

strictly speaking not well-defined. In practice, the mean values might not diverge because the numerically 

computed PDFs have a cut-off due to limited statistical sampling. However, as the case α = 1.25 the fact that 

μ < 2 implies that the convergence of ⟨ρL⟩ might be questionable. Also, we would like to note that, in this 

work as a first step we have limited attention to the study of electrostatic turbulent fluctuations driven by 

uncorrelated stochastic processes in the absence of memory. However, memory and correlations might play 

an important role. For example, in Ref. [10]
 
it was shown that non-Markovian effects are present in fluid 

models of plasma turbulent transport and as a consequence, in this case, effective models of particle transport 

should include both spatial jumps driven by Lévy processes and memory effects driven by non-Markovian 

waiting times. On the other hand, the work in Ref. [9]
 
showed that correlations play a role on gyro-kinetic 

turbulent transport in the presence of shear flows and thus, in this case, the proper treatment requires the use 

of correlated non- Gaussian random processes. The work presented here could be extended to include 

memory effects by incorporating non-Markovian statistics in the Monte-Carlo simulation, and also by 

including correlations using fractional Levy motion models. Note that doing this would naturally introduce a 

characteristic time scale into the turbulence fluctuation model, e.g. the correlation time or the memory time 

scale. A problem of interest would then be to study the dependence of the results on these fluctuation time 

scales and the gyro-period of the orbits. These are interesting problems that we plan to address in the future.  
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b) Self-organisation of random oscillators with Levy stable distributions: 

A simple mathematical but yet powerful tool to study the dynamics of a many-body interacting systems is 

the Kuramoto’s system of randomly coupled limit cycle oscillators. Over the years, many aspects of the 

model, including applications cutting across disciplines, from physical and biological to even social 

modelling, have been considered in the literature [1-11]. A particular application of the model has been in 

turbulence theory where the model can be employed to examine various aspects of the non-linear dynamics. 

In a previous work, we developed a predator-prey model of dual populations with stochastic oscillators to 

examine several important features of the dynamical interplay between the drift wave and zonal flow 

turbulence in magnetically confined plasmas [12]. The underlying reasoning is that by rewriting the function 

representing the fluctuation quantities as fk = |fk| exp(iθk(t) + i k ·  r) and following the typical quadratically 

nonlinear primitive equations that arise in practice as:  

    (1) 

we find a phase evolution equation of the Kuramoto form. By including an additive noise term on the RHS 

of the above equation we can pave the way for use of efficient analytical tools commonly employed in the 

study of the statistical behaviour of many-body systems. Furthermore, by treating the Mk′k′′ as a random 

coefficient we can gain insights into properties of multiplicative statistics, albeit with radical simplifications, 

that are more common in practice e.g. the advective nonlinearities in the Navier-Stokes, MHD, gyrokinetic, 

and other equations. Thus, statistical theories can be viewed as reduced descriptions of the wealth of 

information in the true turbulent dynamics, and there has been a wide range of applications based on these 

statistical treatments e.g Langevin equations for an additive [13] and Stochastic Oscillator model as a 

multiplicative model [14].  

 An important shortcoming here is that the main body of work has been with the focus on Gaussian statistical 

assumptions. Although Gaussian statistics can in certain cases of diffusion in time and space give a good 

representation of the apparent randomness, in many systems there are processes where the Gaussian 

approach is inappropriate [15–20]. There is a wealth of experimental and numerical evidence that indicate 

that turbulent trans- port under some conditions, is non-diffusive [21]. There are several reasons for the 

possible breakdown of the standard diffusion paradigm which is based on restrictive assumptions including 

locality, Gaussianity, lack of long range correlations, and linearity. Different physical mechanisms can 

generate situations where e.g., locality and Gaussianity may be incorrect assumptions for under- standing 

transport. For example, interactions with external fluctuations may introduce long-range correlations and/or 

anomalously large particle displacements [22, 23]. The source of the external fluctuations could be that not 

all relevant physics is taken into account such as coherent modes or other non-linear mechanisms. In 

addition, turbulence intermittency is characterized by patchy spatial structures that are bursty in time and 

coupling to these modes introduces long range correlations and/or Lévy distributed noise characteristics [24]. 

The probability density functions (PDF) of intermittent events often show unimodal structure with “elevated” 

tails that deviate from Gaussian predictions. The experimental evidence of the wave-number spectrum 

characterised by power laws over a wide range of wave-numbers can be directly linked to the values of Lévy 

index α of the PDFs of the underlying turbulent processes. The Lévy-type turbulent random processes and 

related anomalous diffusion phenomena have been observed in a wide variety of complex systems such as 

semiconductors, glassy materials, nano-pores, biological cells, and epidemic spreading. The problem of 

finding a proper kinetic description for such complex systems is a challenge. The pedagogical applications of 

simplified models such as Kuramoto model of random oscillators are particularly beneficiary in 

understanding these non-local and non-Gaussian aspects of dynamics in many-body interacting systems.  
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In this work, we applied the model to study the impact of both additive and multiplicative non-Gaussian 

forcing which has not been considered up to now. In particular, we are interested to show the dominant 

impact of singular events with high amplitude on the long term collective behaviours, and to illustrate the 

limitations of the Gaussian assumptions in these non-linearly coupled systems. We hope to start a wider 

discussion on the features that can be expected in the case of strange kinetics capturing new ways of 

synchronization with anomalous processes opening for new fields of application such as that of transport and 

turbulent dynamics.  

THE NUMERICAL SET UP  

The dynamics of the phases of the oscillators are de- 

scribed by coupled first order differential equations: 

the oscillator which is assumed to be distributed 
according to a Gaussian distribution Jij is the strength 

of the interactions between oscillators ith and jth and 

are assumed to be random constants distributed 

according to an α-stable distribution S(α,β,ζ,μ) with 

characteristic exponent 0 < α ≤ 2, skewness β, scale ζ 

and location μ [12, 25–31]. Here we chose β=0, μ=0, 

and ζ=F/(N√ 2) where F is the control parameter as 

in Ref. [6]. Moreover, we assume positive and 

symmetric coupling, i.e. Jij > 0 and Jij = Jji 

respectively. The α-stable distributions are a general 

class of distributions which also include Gaussian (α 

= 2) and Lorentzian (α = 1) distributions.  

In this work, the numerical integration is performed 

using the Runge-Kutta 4th order scheme with time 

step- ping length δt = 2π × dt where dt is the 

optimum time interval varying for each 

integration while the sampling time step is ∆t = 

0.01. The numerical integration is per- formed 

for the incoherent initial set with θj (t = 0) taken 

to be positive Gaussian distributed random 

values for an ensemble of N oscillators. Here we 

employ an average of Jij over a number of different realisations denoted by Ns = 10, hereafter referred to as 

“samples”. In the present study, the time span considered is of the order of 2π × 10. This time span is found 

to be long enough for the system to reach a steady-state and the numerical noise due to the finite size effects 

are absent.  
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LÉVY COUPLED OSCILLATORS  

We have performed numerical integrations for different values of the fractality index α, e.g. α = 2, 1.5, 1.2. 

Figure 1 illustrates the normalised PDFs of the coupling strengths Jij for the selected αs. Here as we change 

the index α from 2 to 1.2 the tails of the distribution become heavier, indicating the further increase in 

probability of couplings between oscillations with higher strength even at low F values. A x
−(1+α) 

power 

decay fit which is typical of α-stable distributions confirms the proper scaling of the Lévy stable process 

generated by the random generator used here, (see Fig. 1). An analytic expression for the order parameter 

Z(t) = 
N

j =1 exp(iθj )/N was derived by Kuramoto that de- scribes the quality of the synchronisation of the 

ensemble of oscillators with 0 ≤ Z ≤ 1. Where Z = 0 corresponds to a complete a-synchronised state while Z 

= 1 corresponds to a total synchronised state. We have calculated the values of the order parameter averaged 

over Ns samples as well as for the various cases considered. Figures 2(a-c) show the order parameter Z(t) as 

a function of F for different number of oscillator populations N = 250, 500, 1000, with different values of α-

stable distribution index α = 2, 1.5, 1.2. As can be seen in Fig. 2 (a-c) for low values of control parameters 

i.e. F ≤ 2 the phases are a-synchronised with [Z(t)] ≈ 0. As the control parameters increase beyond this 

threshold the phases bifurcate from an a-synchronised to a synchronise state. The threshold where the 

populations change from a synchronised to a-synchronised state, in agreement with the previous reports (see 

Refs. [5, 6]), is found to be independent of the number of considered oscillators. In the following thus, we 

fixed the number of populations to N = 250.  

Figure 3 compares the computed values for N = 250 between the different αs. As can be seen in these 

figures, a bifurcation to a synchronised state occurs 

as F is increased beyond a critical value Fc which 

holds for all fractality index values considered in the 

α-stable distribution. However, there is a significant 

shift to lower values of the criticality parameter Fc as 

α is decreased from 2, where 2 corresponds to the 

Gaussian distribution. This indicates that the extreme 

events from the tails of the distribution can provide a 

faster synchronisation of the coupled oscillators, and 

as the tail gets heavier by moving from α = 1.5 to 

1.2, Fdc is shifted to even lower values.  

In conclusions, we find that extreme events in a non-

linear coupled system such as Kuramoto model, 

govern the long-term behaviour of such systems. In a 

complex system of a realistic turbulence state therefore, the impact of such events has to be analysed and 

simplistic assumptions on the statistics of underlying fluctuations cannot represent their long-term behaviour.  
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